Topic 2-Scientific Notation

Scientific notation: a shorthand method to express very large or very small numbers.

$$
\text { Ex: } 3400000000=3.4 \times 10^{9}
$$

$$
0.0000000576=5.76 \times 10^{-8}
$$

General Structure:

(decimal number between 1 and 10$) \times($ power of 10$)$

$$
3.56 \times 1 \cdot \overline{0^{7}} \times 10
$$

To convert a number from standard form to scientific notation:

1. Move the decimal point as much as needed to obtain a decimal number between 1 and 10 .

$$
\text { Eg. } 3562=3562.0 \rightarrow 3.562
$$

2. The amount of places the decimal was moved becomes the exponent on the 10
Eg. Moved the decimal 3 places $\rightarrow 10^{3}$
3. $3562=3.562 \times 10^{3}$ in scientific notation.
*NOTE:
If the decimal point moves left, the exponent on the 10 is positive; if it moves right the exponent is negative.

Example: Convert 250883 to scientific notation.

1. $250883 \rightarrow 2.50883$
2. Moved decimal 5 times to left $\rightarrow 10^{5}$
3. So $2.50883=2.50883 \times 10^{5}$

Practice: Write the following numbers in scientific notation.

1. 8546 \qquad $\times 10$
2. 23000 \qquad
\qquad $\times 10$
3. 572.9 \qquad $\times 10$
4. 2990000 \qquad
\qquad $\times 10$
5. 3418.06 \qquad $\times 10$
6. 0.0003 \qquad $\times 10$
7. 0.65743 \qquad $\times 10$
8. 0.0224 \qquad $\times 10$

To convert a number from scientific notation to standard form

1. CONVERSELY,
positive exponent \rightarrow move the decimal point to the right, negative exponent \rightarrow move the decimal point to the left.
2. Move the decimal from its current place, the amount and direction specified by the exponent on the 10 .
Eg. $\quad 2.31 \times 10^{-3} \rightarrow 0.00231$

Practice: Convert these numbers to standard form.

1) $2 \times 10^{3}=$
2) $2.331 \times 10^{5}=$ \qquad
3) $5 \times 10^{-3}=$
4) $7.627 \times 10^{-5}=$ \qquad
5) $3.004 \times 10^{3}=$ \qquad
6) $5.23 \times 10^{4}=$
\qquad
7) $5.062 \times 10^{2}=$ \qquad
